IMPROVING HIGH GAS-OIL RATIO WELLS EFFICIENCY

Background
One of the main complications of artificial lift is the high gas-oil ratio (GOR) of the pumped product at the pump suction. At present it is highly important to improve the management of the wells equipped with electric submersible pumps (ESP), the root cause analysis of failures (caused by high GOR), the development of devices for transition of annular gas into the tubing and development of sufficient recommendations to extend the overhaul life.

Aims and Objectives
Improving the efficiency of high GOR wells operation equipped with the electrical submersible pump units by means of jet devices to bypass the annular gas to improve technical and economic indicators.

Methods
The solution to the problem of excessive free gas in the annulus is based on field studies using relevant information methods of experimental data processing.

Results
From the analysis of ESP operating experience it was obtained the negative impact of high GOR in the annulus on the performance of the equipment. Therefore, the jet device to bypass the annulus gas to tubing was designed.

Conclusion
The use of this device will automatically reduce the gas pressure in the annulus of the well with artificial lift, regardless to the pressure in discharge line or ambient temperature, and thereby it will significantly improve the efficiency of operation of wells equipped with ESP.

Key words: oil well, electric submersible pump, gas content, well annulus, tubing, overhaul life, jet apparatus

References

The authors

- Saracheva Diana A.
 Almetyevsk State Petroleum Institute
 Assistant of Industrial Power Engineering Chair
 42, R. Fakhretdin str., Almetyevsk, 450103, Russian Federation
 tel: (8553) 31-01-60
e-mail: teplotexAGNI@yandex.ru
 Post-graduate Student of Institute of Energy Resources Transportation GUP (Correspondence Form of Education)

- Vakhitova Roza I., Candidate of Technical Sciences
 Almetyevsk State Oil Institute
 Assistant Professor of Industrial Power Engineering Chair
 42, R. Fakhretdin str., Almetyevsk, 450103, Russian Federation
 tel: (8553) 31-01-60
e-mail: teplotexAGNI@yandex.ru